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Abstract
We present a mean field theory of code-division multiple-access (CDMA)
systems with error-control coding. On the basis of the relation between the
free energy and mutual information, we obtain an analytical expression of the
maximum spectral efficiency of the coded CDMA system, from which a mean-
field description of the coded CDMA system is provided in terms of a bank
of scalar Gaussian channels whose variances in general vary at different code
symbol positions. Regular low-density parity-check (LDPC)-coded CDMA
systems are also discussed as an example of the coded CDMA systems.

PACS numbers: 89.70.−a, 75.10.Nr, 84.40.Ua

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In modern societies, many information technology-based applications, such as cellular
telephony networks, require unconstrained connectivity, which rely heavily on wireless
communications. In recent years, spin glass theory has been applied to the analysis of
wireless communication systems, such as the code-division multiple-access (CDMA) and
multiple-input multiple-output (MIMO) systems, by mapping these systems onto disordered
spin systems [1–6].

Replica analysis has successfully provided quantitative characterizations of these wireless
communication systems in terms of single-body mean-field descriptions. Guo and Verdú
[3], extending the analysis of Tanaka [1, 2], have claimed that a randomly spread
CDMA channel, where users modulate their symbols with randomly generated spreading
sequences, is statistically equivalent to a bank of scalar Gaussian channels in the large-system
(thermodynamical) limit. Their claim, which they termed the ‘decoupling principle’, can be
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regarded as one form of mean field theory. It is nevertheless of particular significance because
the resulting mean-field description, which gives a representation of a complex communication
system in terms of scalar Gaussian channels, makes sense from a communication theory point
of view.

Most existing studies discussed uncoded CDMA systems, in which error-control coding
is not explicitly taken into account. On the other hand, real-world CDMA-based systems, such
as the third-generation cellular phone systems, are equipped with error-control coding in order
to achieve high-performance communication [7]. In this paper, we study a mean field theory
of coded CDMA systems, in order to obtain explicitly their mean-field descriptions, similar to
those of uncoded systems, and to see whether the derived mean-field formulation provides a
simplified representation of coded CDMA systems in terms of simple communication systems.

This paper is organized as follows. In section 2 we introduce the coded CDMA channel
model to be analyzed. In section 3 we present a mean field theory of the model. On the basis
of a relation between the mutual information of the channel model and the free energy of the
system [8], we show a mean-field description of the coded CDMA systems. In section 4,
we discuss regular LDPC-coded CDMA systems as an example of coded CDMA systems,
followed by a conclusions section.

2. System model and multiuser detection

We consider an uplink of a randomly spread coded CDMA system with K users. User k
encodes an original message ξk into a codeword ck = (

ci
k

)
with ci

k = ±1, with an encoding
function gk(·)

ck = gk(ξk). (1)

We assume that codelengths M are the same for all users.
Codewords are modulated with spreading sequences, and then transmitted to a receiver.

The spreading sequence used to modulate the ith symbol of the codeword of the kth user, ci
k ,

is denoted by si
k = 1√

W

(
si

1k, . . . , s
i
Wk

)
, for which we assume random spreading, meaning that

si
µk’s are independent and identically distributed (i.i.d.) real-valued random variables with

zero mean, unit variance and finite higher-order moments. The received signals at the receiver
through the CDMA channel are given by

yi
µ = 1√

W

K∑
k=1

Akc
i
ks

i
µk + ni

µ (i = 1, . . . ,M;µ = 1, . . . ,W), (2)

where Ak ∈ R denotes an amplitude of user k’s signal, representing attenuation (fading) effects,
and where ni

µ’s are real-valued additive noise, which are assumed i.i.d. random variables
following a probability distribution ρ0(·). Equation (2) is simplified by letting xi

k = Akc
i
k:

yi
µ = 1√

W

K∑
k=1

xi
ks

i
µk + ni

µ (i = 1, . . . ,M;µ = 1, . . . ,W). (3)

In the present paper we follow the Bayesian framework. By letting xk = (
x1

k , . . . , x
M
k

)
and

yµ = (
y1

µ, . . . , yM
µ

)
, the entire channel input and output are denoted by �x = (x1, . . . ,xK)

and �y = (y1, . . . ,yW), respectively. From the above-mentioned setting, all information
of the users’ encoding schemes as well as the channel attenuation are encapsulated in a
prior distribution p0(�x) of the entire channel input �x. The receiver postulates that the prior

2
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distribution of the channel input is p(�x) and that the distribution of the noise is ρ(·). The true
and postulated distributions of �y conditioned on �x are thus given by

p0(�y|�x) =
M∏
i=1

W∏
µ=1

ρ0

(
yi

µ − 1√
W

K∑
k=1

si
µkx

i
k

)
(4)

and

p(�y|�x) =
M∏
i=1

W∏
µ=1

ρ

(
yi

µ − 1√
W

K∑
k=1

si
µkx

i
k

)
, (5)

respectively. The receiver has to infer �x from �y, which is called multiuser detection. On the
basis of the Bayesian framework, multiuser detection is formulated as a statistical inference
problem of �x from �y. A broad range of multiuser detectors [9], including optimal and linear
ones, can be constructed by the generalized posterior mean estimator (GPME) [2, 3]

[xk] =
∫

xkp(�x|�y) d�x, (6)

where p(�x|�y) is the posterior distribution postulated by the receiver, given by

p(�x|�y) = p(�y|�x)p(�x)

π(�y)
, (7)

with π(�y) = ∫
p(�x)p(�y|�x) d�x being the postulated marginal distribution of �y. The posterior

distribution p(�x|�y) can alternatively be represented as a Boltzmann distribution:

p(�x|�y) ∝ exp(−γH(�x)), (8)

with the Hamiltonian

H(�x) = −
∑
i,µ

log ρ

(
yi

µ − 1√
W

K∑
k=1

si
µkx

i
k

)
− log p(�x), (9)

and where the inverse temperature is γ = 1. Accordingly, GPME [xk] can be regarded as
a site magnetization of the system characterized by the Hamiltonian H(�x). Note that in this
system each ‘spin’ variable, xk , is a collection of M variables, each of which corresponds to a
codeword symbol with fading effects.

3. Mean field theory

3.1. Mutual information and free energy

Mutual information [10] quantifies theoretical information transmission capabilities of a given
channel model. We define a generalized mutual information I ( �X; �Y ) of the introduced model
as

I ( �X; �Y ) =
∫

p0(�x)

∫
p0(�y|�x) log

p(�y|�x)

π(�y)
d�y d�x, (10)

where, and hereafter, logarithms are taken to base e. The conventional definition of
mutual information, denoted by I0( �X; �Y ), is recovered if we let p(�y|�x) = p0(�y|�x) and
p(�x) = p0(�x) in (10). The spectral efficiency (an upper limit of data rates, divided by
bandwidth, where reliable communication is possible) [11], which is also a performance
measure frequently used in the context of wireless communication, is defined as

C = 1

W
I( �X; �Y ). (11)

3
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The generalized mutual information can be decomposed as

I ( �X; �Y ) = H( �Y ) − H( �Y | �X), (12)

where

H( �Y ) = −
∫

π0(�y) log π(�y) d�y (13)

is the (Shannon) differential entropy of �y, where the true marginal distribution of �y is
π0(�y) = ∫

p0(�x)p0(�y|�x) d�x, and where

H( �Y | �X) = −
∫

p0(�x)

∫
p0(�y|�x) log p(�y|�x) d�y d�x (14)

is the conditional differential entropy of �y conditioned on �x, which is equal to the differential
entropy of the channel noise. By noticing that − log π(�y) is the free energy of the system
characterized by the posterior distribution p(�x|�y), we are encouraged to adopt statistical
mechanical approaches to evaluate H( �Y ), which is the free energy averaged with respect
to the received signals. The relation between the mutual information and the free energy
(averaged over the received signals) was pointed out explicitly in [8].

We consider the large-system limit, where K and W go to infinity with the load β = K/W

fixed, and the random spreading, in which one has to evaluate H( �Y |S), where S = {
si
µk

}
denotes the collection of the spreading sequences. Assuming the self-averaging property for
H( �Y |S), we evaluate, in the large-system limit, the quantity

h = lim
K→∞

1

K
H( �Y |S). (15)

We evaluate h using the replica method. We first rewrite (15) as

h = − lim
K→∞

1

K
lim
n→0

∂

∂n
log �n = − lim

n→0

∂

∂n
lim

K→∞
1

K
log �n, (16)

where

�n =
∫

ES{π0(�y)[π(�y)]n} d�y, (17)

with ES{·} denoting averaging with respect to the spreading sequences S. We evaluate
limK→∞ K−1 log �n in the large-system limit, assuming that n is a positive integer, and
then extend the result to real values of n in the vicinity of 0 to obtain h.

Following the replica analysis of [2, 3], we obtain, under the assumption of replica
symmetry (RS) (see appendix A for the derivation),

h = −β−1
M∑
i=1

∫
ρ̄0

⎛
⎝yi −

√
β(mi)2

qi
t i

⎞
⎠ log[ρ̄(yi −

√
βqit i)]Dti dyi

+
∑

i

{
ri F

i − Ei

2
+ miEi − 1

2
qiF i − F i

2Ei
− Ei

2
ri

0 − 1

2
log

2π

Ei

}

− lim
K→∞

1

K

〈〈
log
∫

p(�x)
∏
k

ρG(zk|xk) d�x
〉〉

, (18)

where ρ̄0(·) and ρ̄(·) are defined as

ρ̄0(w
i) =

∫
ρ0

(
wi −

√
β

(
ri

0 − (mi)2

qi

)
n

)
Dn, (19)

4
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ρ̄(wi) =
∫

ρ(wi −
√

β(ri − qi)n)Dn, (20)

with Dn = e−n2/2 dn/
√

2π being a Gaussian measure, where ρG0(zk|x0k) and ρG(zk|xk),
with zk = (

z1
k, z

2
k, . . . , z

M
k

)
, are defined as

ρG0(zk|x0k) =
M∏
i=1

[√
(Ei)2

2πF i
exp

{
− (Ei)2

2F i

(
zi
k − xi

0k

)2
}]

, (21)

ρG(zk|xk) =
M∏
i=1

[√
Ei

2π
exp

{
−Ei

2

(
zi
k − xi

k

)2
}]

, (22)

and where the order parameters {Ei, F i, ri
0, r

i, mi, qi; i = 1, . . . , M} should satisfy the RS
saddle-point equations

Ei =
∫

ρ̄ ′
0

⎛
⎝yi −

√
β(mi)2

qi
t i

⎞
⎠ ρ̄ ′(yi −

√
βqit i)

ρ̄(yi −
√

βqit i)
Dti dyi, (23a)

F i =
∫

ρ̄0

⎛
⎝yi −

√
β(mi)2

qi
t i

⎞
⎠( ρ̄ ′(yi −

√
βqit i)

ρ̄(yi −
√

βqit i)

)2

Dti dyi, (23b)

ri
0 = lim

K→∞
1

K

〈〈∣∣xi
0

∣∣2〉〉, ri = lim
K→∞

1

K

〈〈〈|xi |2〉〉〉, (23c)

mi = lim
K→∞

1

K

〈〈
xi

0 · 〈xi〉〉〉, qi = lim
K→∞

1

K
〈〈|〈xi〉|2〉〉. (23d)

Here we let xi
0 = (

xi
01, . . . , x

i
0K

)
and xi = (

xi
1, . . . , x

i
K

)
. Definitions of the symbols 〈· · ·〉

and 〈〈· · ·〉〉 are

〈· · ·〉 =
∫

(· · ·) p(�x)
∏K

k=1 ρG(zk|xk)∫
p(�x)

∏K
k=1 ρG(zk|xk) d�x d�x, (24)

〈〈· · ·〉〉 =
∫

(· · ·)p0(�x0)

K∏
k=1

ρG0(zk|x0k) d�z d�x0, (25)

respectively. One can regard the last term on the right-hand side of (18) as the per-user
(Shannon) differential entropy of the outputs �z = (z1, . . . ,zK) when the codewords ck are
sent separately over a bank of Gaussian channels with fading, ρG0(zk|x0k), k = 1, . . . , K ,
and when the receiver assumes the Gaussian channels with fading, ρG(zk|xk), k = 1, . . . , K .

The maximum spectral efficiency of the present channel model, which can be achieved
by letting p(�x) = p0(�x) and p(�y|�x) = p0(�y|�x), is given by

C0 = lim
W→∞

1

W
I0( �X; �Y )

= −
∑

i

∫
ρ̄0(y

i −
√

βqit i) log[ρ̄0(y
i −

√
βqit i)]Dti dyi

− β

2

∑
i

{
1 + F i(ri − qi) + log

2π

F i

}
− lim

K→∞
β

K

〈〈
log
∫

p0(�x)
∏
k

ρG0(zk|xk) d�x
〉〉

+ lim
K→∞

β

K

∫
p0(�x)

∫
p0(�y|�x) log p0(�y|�x) d�y d�x. (26)

5
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x i
1

x i
2

x i
K

{sµ µ
i }

{si }

{si }

{n }i

Multiuser
detector:
GPME (6)

[x1]

[x2]

[xK]

x M
1x 1

1

1

µ

µ

2

x M
2x 1

2

x M
Kx 1

K

K

(a) CDMA multiuser channel

x i
1

x i
2

x i
K

GPME (24)

x M
1x 1

1

x M
2x 1

2

x M
Kx 1

K

N(x , F /(E ) )i
1

i i 2

N(x , F /(E ) )i
2

i i 2

N(x  , F /(E ) )i
K

i i 2

x1

x2

xK

z i
1

z i
2

z i
K

(b) A bank of scalar Gaussian channels

Figure 1. (a) Schematic representation of the coded CDMA channel. (b) Decoupling structure of
the coded CDMA channel. N(µ, σ 2) denotes a Gaussian channel in which µ is a channel input
and the channel noise is drawn i.i.d. from a Gaussian distribution with mean zero and variance σ 2.

This result can be regarded as an extension of Tanaka’s result [12] for uncoded CDMA systems,
in which each user sends one symbol, to the case where M symbols are transmitted. It should
be noted that the latter is not a straightforward extension of the former because in the latter
we allow statistical correlations among M symbols, which can arise due to coding in coded
systems and are to be utilized in decoding.

3.2. Mean-field description of coded CDMA systems

The expectations 〈· · ·〉 and 〈〈· · ·〉〉, as defined in (24) and (25), respectively, have the following
interpretations. Let us consider a bank of K independent single-user scalar Gaussian channels,
where the kth user sends M symbols via the kth Gaussian channel, and assume that the true
input–output characteristic of the whole channel usage is defined by

∏
k ρG0(zk|x0k) and

that the input–output characteristic postulated at the receiver is represented by
∏

k ρG(zk|xk).
Then, 〈· · ·〉 denotes the generalized posterior mean with respect to the posterior distribution of
�x given channel output �z, which is derived by postulating the prior distribution p(�x) and the
channel

∏
k ρG(zk|xk). On the other hand, 〈〈· · ·〉〉 is the expectation with respect to the true

prior distribution p0(�x0) and the channel
∏

k ρG0(zk|x0k).
Indeed, by performing replica analysis for joint moments of [xk] and x0k , just as in [3]

(see appendix B for detailed analysis), one can show that the joint distribution of ([xk],x0k)

conditioned on the spreading sequences in the coded CDMA system converges, under random
spreading and in the large-system limit, to the joint distribution of (〈xk〉,x0k) in the system
composed of the scalar Gaussian channels:

p([xk],x0k|S) → p(〈xk〉,x0k), (27)

which means that the decoupling principle [3] also holds for the coded CDMA system, and that
the mean-field description has been obtained in terms of the single-user Gaussian channels,
with 〈xk〉 regarded as a ‘site magnetization’. Schematic pictures for the decoupling structure
of the coded CDMA system are shown in figure 1. The coded CDMA channel with a multiuser
detector which uses GPME (6) is, in the large-system limit, statistically equivalent to a bank
of single-user scalar Gaussian channels whose noise variances are the same across users but
generally different at different code symbol positions. The dependence of the variances of the
scalar Gaussian channels on input symbol positions, due to effects of coding, is one unique
aspect of the coded systems.

6
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4. LDPC-coded CDMA systems

In this section we apply the findings obtained in the previous section to the LDPC-coded
CDMA systems, focusing on a Gallager code [14], which is arguably the most common LDPC
codes.

Let N be the length of the original message. Gallager codes are defined by a (M −N)×M

parity check matrix A (see [8, 15] for an elucidation of Gallager codes) in which the γ th row
weight (the number of nonzero elements in the γ th row) is Lγ and the ith column weight (the
number of nonzero elements in the ith column) is Ci . The code rate for unbiased messages is
given by R = N/M . If the row and column weights are the same across the rows and columns,
respectively, such LDPC codes are called regular. On the other hand, irregular LDPC codes
have non-constant row and/or column weights. In this paper we consider regular LDPC-coded
systems for simplicity. It is straightforward to extend our formulation to cases with irregular
codes.

We consider the binary phase-shift-keying (BPSK) modulation and no fading effect,
where codewords belong to {1,−1}M . In general, the receiver knows exactly the parity check
matrices, which define the prior distribution of the codewords. We therefore assume that the
true prior distribution p0(�x0) and the postulated one p(�x) are the same. We also assume that
each user’s code is randomly chosen from the same LDPC code ensemble. By letting the kth
user’s parity check matrix Ak , we have p0(�x0) = ∏

k p(x0k|Ak) and p(�x) = ∏
k p(xk|Ak),

where p(xk|Ak) takes a nonzero value (=2−N ) only if xk is a codeword of the code defined
by Ak . The GPME 〈xk〉 is rewritten as

〈xk〉 =
∑

xk={1,−1}M
xk

p(xk|Ak)ρG(zk|xk)∑
x′

k
p(x′

k|Ak)ρG(zk|x′
k)

. (28)

The third term of the right-hand side of (18) and the order parameters (23a), for the
regular LDPC-coded CDMA systems, can be evaluated on the basis of the calculation given
in [16]: we therefore omit details of the derivation. Denoting the third term of (18) divided
by the codelength M as hz, and letting L and C be the row and column weights, respectively,
we obtain, in the infinite codelength limit (M → ∞ with R fixed),

hz = log 2 − C

L

∫
log

(
1 +

L∏
l=1

ul

)
L∏

l=1

{σ(ul) dul} + C

∫
log(1 + uû)σ (u)σ̂ (û) du dû

−
∫

log

[∑
x=±1

C∏
c=1

(1 + xûc) ×
√

E

2π
exp

{
−E

2
(z − x)2

}]

×
√

E2

2πF
exp

{
− E2

2F
(z − 1)2

}
D̄ûC dz, (29)

where D̄ûC ≡ ∏C
c=1 {σ̂ (ûc) dûc}, and where the functions σ(u), σ̂ (û) are determined by the

following saddle-point equations, under the RS ansatz,

σ(u) =
∫

δ

(
u − tanh

(
Ez +

C−1∑
c=1

tanh−1 ûc

))
×
√

E2

2πF
exp

{
− E2

2F
(z − 1)2

}
D̄ûC−1 dz,

(30a)

σ̂ (û) =
∫

δ

(
û −

L−1∏
l=1

ul

)
L−1∏
l=1

{σ(ul) dul}, (30b)

7
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GPME (28)N(x , F/E  )i
1

2 x1

x2

xK

z i
1

z i
2

z i
K

GPME (28)

GPME (28)N(x  , F/E  )i
K

2

N(x , F/E  )i
2

2

x i
1

x i
2

x i
K

x M
1x 1

1

x M
2x 1

2

x M
Kx 1

K

Figure 2. Decoupling structure of the regular LDPC-coded CDMA systems. The variances of the
Gaussian channels take the same value, independent of users and symbol positions.

and where the order parameters {Ei, F i,mi, qi} do not depend on the symbol positions in the
regular LDPC code setting and are given, dropping the index i, by

E =
∫

ρ̄ ′
0

⎛
⎝y −

√
βm2

q
s

⎞
⎠ ρ̄ ′(y − √

βqs)

ρ̄(y − √
βqs)

Ds dy, (31a)

F =
∫

ρ̄0

⎛
⎝y −

√
βm2

q
s

⎞
⎠( ρ̄ ′(y − √

βqs)

ρ̄(y − √
βqs)

)2

Ds dy, (31b)

m =
∫

tanh

(
Ez +

∑
c

tanh−1 ûc

)√
E2

2πF
exp

{
− E2

2F
(z − 1)2

}
D̄ûC dz, (31c)

q =
∫

tanh2

(
Ez +

∑
c

tanh−1 ûc

)√
E2

2πF
exp

{
− E2

2F
(z − 1)2

}
D̄ûC dz. (31d)

Note that ri
0 = ri = 1 in (23c) because xi

0 and xi take values in {1,−1} in the present setting.
By substituting the result (29) into (18), the maximum spectral efficiency per symbol for

the regular LDPC-coded CDMA system is obtained. By particularizing the channel noise to
additive white Gaussian noise (AWGN), our result is reduced to that obtained by the replica
analysis of the regular LDPC-coded CDMA system over AWGN channel [17]. The mean-
field description, i.e. the decoupling structure for the regular LDPC-coded CDMA systems, is
schematically shown in figure 2. Since the order parameters Ei, F i do not depend on the code
symbol positions, in contrast to the general mean-field description of coded CDMA systems
given in section 3, the regular LDPC-coded CDMA systems with GPME (28) are decoupled
into a bank of single-user Gaussian channels whose variances are the same independently of
the code symbol positions. This independence is due to the statistical uniformity of code
symbol positions in the regular LDPC code ensemble.

As shown in [17], when the row weight is not so large, the regular LDPC-coded CDMA
system has two kinds of phase transitions, the decoding threshold and the information-
theoretic threshold, just as those found in statistical mechanical analysis of single-user LDPC
codes [8, 15, 16]. The former is also called the dynamical transition point, and the only
stable solution is the perfect ferromagnetic solution when the noise level is smaller than

8
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Figure 3. Relationship between the decoding threshold of a regular LDPC-coded CDMA system
with AWGN channel and that of the LDPC code over AWGN channel, in the matched case.
(C, L) = (3, 6) for both of them. (a) The bit error rate P s

b of the single-user LDPC code over
AWGN channel with the noise variance 	0 = 	 (where 	0 and 	 denote the true and postulated
variances, respectively, in the single-user LDPC code over AWGN channel), (b) the noise variance
of the decoupled system, F/E2, versus the actual noise variance σ 2

0 = σ 2 (where σ 2
0 and σ 2 denote

the true and postulated variances, respectively) and (c) the bit error rate P m
b of the LDPC-coded

CDMA system. The thick solid line in (a) is obtained by evaluating numerically the saddle-point
equations derived in [8] with AWGN (variance: 	0 = 	). Those in (b) and (c) are given by
evaluating numerically the saddle-point equations (30) and (31) with AWGN (variance: σ 2

0 = σ 2)
and β = 0.5. The dot-dashed lines denote unstable solutions, which are not obtained numerically,
but are schematically drawn for better understanding. At the decoding threshold of the LDPC-
coded CDMA system (marked by the vertical dashed line), the variance of the Gaussian channel
given in the decoupling structure, F/E2, corresponds to the decoding threshold, characterized by
	0, of the single-user LDPC code over AWGN channel (marked by the horizontal dashed line). In
(b) and (c), the circles (◦) and squares (�) denote, respectively, the perfect ferromagnetic solution
and the suboptimal ferromagnetic solution at the thermodynamical transition point. The circle (◦)

and square (�) in (a), which are mapped from (b), are located at different noise variances.

that, while the suboptimal ferromagnetic solution appears when the noise level exceeds
the point. The latter transition point is termed the thermodynamical transition point, at
which the free energies of the above-mentioned solutions become equal, and over which the
suboptimal ferromagnetic solution is dominant. Therefore, the thermodynamical transition
point determines the theoretical limitation, up to which the performance could be achieved if
we were given infinite computational time.

From the decoupling structure (see figure 2), one can regard each user in the LDPC-
coded CDMA system as utilizing separately from other users the single-user LDPC code
over AWGN channel where the true noise variance is 	0 = F/E2 and the noise variance
postulated at the receiver is 	 = 1/E. When we assume an LDPC-coded CDMA system over
AWGN channel, and letting σ 2

0 and σ 2 be the true and the postulated noise variances of the

9
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Figure 4. (a) The maximum loads β corresponding to the decoding threshold (solid line) and
thermodynamical transition point (dashed line) of the (C, L) = (3, 6) regular LDPC-coded
CDMA system with AWGN channel. (b) Spectral efficiencies, achieved at the maximum loads
corresponding to the two transition points shown in (a), versus the signal-to-noise ratio Eb/N0.
The single-user AWGN capacity [11] (dot-dashed line) is also shown.

AWGN channel, respectively, then this observation leads to a relationship between the noise
variances

(
σ 2

0 , σ 2
)

of the original LDPC-coded CDMA system over AWGN channel and the
noise variances (	0, 	) of the single-user LDPC code over AWGN channel. According to the
relationship, one can establish correspondence between the decoding threshold of the regular
LDPC-coded CDMA system over AWGN channel and that of the single-user LDPC code over
AWGN channel. A numerical example of this correspondence of the decoding thresholds is
shown in figure 3, where we focus on the matched case p0(�y|�x) = p(�y|�x) for simplicity,
thereby showing the relationship between σ 2

0 = σ 2 and 	0 = 	. On the other hand, the
thermodynamical transition points of the regular LDPC-coded CDMA system and the single-
user LDPC code over AWGN channel do not correspond; because the perfect ferromagnetic
solution and the suboptimal ferromagnetic solution of the regular LDPC-coded CDMA system
at thermodynamical transition point are respectively mapped onto a ferromagnetic solution
and a suboptimal ferromagnetic solution of the single-user LDPC code over AWGN channel,
which, however, are with different noise variances.

For the mismatched cases, where p0(�y|�x) and p(�y|�x) are not equal, one can obtain
the correspondence of the decoding thresholds exactly in the same way, on the basis of the
relationship between

(
σ 2

0 , σ 2
)

and (	0, 	).
Given a regular LDPC-coded CDMA system, one can determine analytically the

maximum load the system can accommodate, which is given in the matched case.
Figure 4(a) shows the decoding thresholds and the thermodynamical transition points of a
regular LDPC-coded CDMA system with AWGN channel. Figure 4(b) shows the maximum
spectral efficiencies of the system, achieved at the maximum loads determined by the two
transition points for given signal-to-noise ratios Eb/N0 = 1/

(
2Rσ 2

0

)
. It can be seen that

the theoretically achievable spectral efficiency of this system comes close to the single-user
AWGN capacity [11], which is an upper bound of the spectral efficiency of multiple-access
systems.

5. Conclusions

We have presented the mean field theory of the coded CDMA systems, in which we have
obtained the analytical expression of the maximum spectral efficiency, derived on the basis of

10
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the relation between the free energy of the coded CDMA system and the mutual information.
The mean-field description of the coded CDMA system with a multiuser detector based on
GPME (6) has been given by a bank of single-user Gaussian channels which in general take
different variances at different code symbol positions. By utilizing the result obtained for the
general coded CDMA systems, the mean-field description of the regular LDPC-coded CDMA
system has been characterized in terms of a bank of Gaussian channels whose variances are the
same independently of the code symbol positions. Using this mean-field description, we have
established the correspondence between the decoding threshold of the regular LDPC-coded
CDMA system and that of the single-user LDPC code over a Gaussian channel.

It is known that the CDMA and MIMO systems can be modeled by a linear vector channel.
An extension of our analysis to coded vector channel systems is the subject of future work.
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Appendix A. Evaluation of the conditional differential entropy conditioned on the
spreading sequences

In this appendix we evaluate the conditional differential entropy h, by basically following the
procedures in [2, 3]. We denote the original channel input and the replicated channel inputs
as �x0 and {�xa; a = 1, . . . , n}, respectively. We let xi

a = (
xi

a1, . . . , x
i
aK

)
for a = 0, . . . , n.

Assuming that n is a positive integer, one obtains

�n =
∫ ⎡
⎣∫ ES

⎧⎨
⎩

n∏
a=0

⎛
⎝ M∏

i=1

W∏
µ=1

ρa

(
yi

µ − 1√
W

K∑
k=1

si
µkx

i
ak

)⎞⎠
⎫⎬
⎭ d�y

⎤
⎦ n∏

a=0

[pa(�xa) d�xa],

(A.1)

where ρa(·) = ρ(·) and pa(�xa) = p(�xa) for a = 1, . . . , n.
Independence of the spreading sequences with respect to the index µ allows us to rewrite

�n as

�n =
∫

eWG
n∏

a=0

[pa(�xa) d�xa], (A.2)

where

eG =
∫

Es

{
n∏

a=0

(
M∏
i=1

ρa

(
yi −

√
βvi

a

))}∏
i

dyi, (A.3)

vi
a = vi

a(s
i ) = 1√

K

K∑
k=1

si
kx

i
ak, a = 0, . . . , n. (A.4)

Here, si = (
si

1, . . . , s
i
K

)
and Es{· · ·} denotes averaging over {si; i = 1, . . . , M}.
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Since vi
a is a sum of the i.i.d. random variables of si ,vi = (

vi
1, v

i
2, . . . , v

i
n

)
conditioned

on
{
xi

a; a = 0, . . . , n
}

follows, in the large-system limit, a multivariate Gaussian distribution
with mean 0 and the covariance matrix Qi = (

Qi
ab

)
with

Qi
ab = 1

K

K∑
k=1

xi
akx

i
bk, (A.5)

via the central limit theorem (vi and vj (i �= j) are independent as the spreading sequences
are also independent with respect to the coded symbol indices i, j ). The expectation Es{· · ·}
in (A.3) therefore reduces to averaging over Gaussian random variables vi (i = 1, . . . ,M),
yielding

eG(Q) = exp

(
M∑
i=1

g(Qi)

)
, (A.6)

where Q = (Q1,Q2, . . . ,QM) and exp(g(Qi)) is given by

eg(Qi) =
∫

Evi

{
ρ0
(
yi −

√
βvi

0

) n∏
a=1

ρ
(
yi −

√
βvi

a

)}
dyi. (A.7)

Since eG(Q) depends on {�xa; a = 0, . . . , n} only via Q, we obtain

�n =
∫

eWG(Q)µK(Q) dQ, (A.8)

where dQ = ∏
i

∏
a�b dQi

ab, and where µK(Q) is the probability measure of Q, which is
defined as

µK(Q) =
∫ n∏

a=0

pa(�xa)

M∏
i=1

∏
a�b

δ

(
K∑

k=1

xi
akx

i
bk − KQi

ab

)
n∏

a=0

d�xa. (A.9)

Assuming that the measure µK(Q) satisfies the large-deviation principle as K → ∞ with
a rate function 
(Q), we have the heuristic formula µK(Q) ≈ e−K
(Q) in the large-system
limit [18], which allows us to apply the saddle-point method to obtain

lim
K→∞

1

K
log �n = sup

Q
[β−1G(Q) − 
(Q)]. (A.10)

The rate function 
(Q) is given by the Legendre transform of the cumulant generating function
φ(Q̃), as


(Q) = sup
Q̃

[Q · Q̃ − φ(Q̃)], (A.11)

where Q · Q̃ = ∑
i

∑
a�b Qi

abQ̃
i
ab, and φ(Q̃) is defined by the following formula, assuming

that the limit exists:

φ(Q̃) = lim
K→∞

1

K
log

⎧⎨
⎩
∫ n∏

a=0

pa(�xa) exp

⎛
⎝ M∑

i=1

∑
a�b

Q̃i
ab

K∑
k=1

xi
akx

i
bk

⎞
⎠ n∏

a=0

d�xa

⎫⎬
⎭ . (A.12)

Summarizing the above results, one obtains

lim
K→∞

1

K
log �n = sup

Q
inf
Q̃

[β−1G(Q) − Q · Q̃ + φ(Q̃)]

= sup
Q

inf
Q̃

[
β−1

∑
i

g(Qi) − Q · Q̃ + φ(Q̃)

]
. (A.13)
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Now let us make the replica symmetry (RS) assumption to proceed further, on the basis
of which we let, for a �= b, a �= 0, b �= 0,

Qi
00 = ri

0, Qi
aa = ri, Qi

0a = mi, Qi
ab = qi,

Q̃i
00 = Gi

0

2
, Q̃i

aa = Gi

2
, Q̃i

0a = Ei, Q̃i
ab = F i.

(A.14)

Using expressions of the Gaussian random variables {vi
a} in terms of standard Gaussian random

variables ni
0, n

i
a, t

i ,

vi
0 =

√
ri

0 − (mi)2

qi
ni

0 +

√
(mi)2

qi
t i , (A.15)

vi
a =

√
ri − qini

a +
√

qit i , a = 1, . . . , n, (A.16)

we obtain, under the RS ansatz,

eg(Qi) =
∫

ρ̄0

⎛
⎝yi −

√
β(mi)2

qi
t i

⎞
⎠ [ρ̄(yi −

√
βqit i)]nDti dyi, (A.17)

where ρ̄0(·) and ρ̄(·) are defined by (19) and (20), respectively. Using the Hubbard–
Stratonovich transform

ex2 =
√

η

2π

∫
exp

[
−η

2
z2 +

√
2ηxz

]
dz, (A.18)

one finds that

φ(Q̃) = lim
K→∞

1

K
log

[∫ {∫
p0(�x0) × e

∑
k,i

Gi
0

2 (xi
0k)

2
∏
k

ρG0(zk|x0k) d�x0

}

×
{∫

p(�x) × e
∑

k,i
Gi−Fi +Ei

2 (xi
k)

2
∏
k

ρG(zk|xk) d�x
}n

e
n
2

∑
k,i Ei (zi

k)
2

d�z
]

+
n

2

∑
i

log
2π

Ei
,

(A.19)

where ρG0(zk|x0k) and ρG(zk|xk) are given by (21) and (22), respectively. Q · Q̃ is given,
under the RS ansatz, by

Q · Q̃ =
∑

i

(
ri

0

Gi
0

2
+ nri G

i

2
+ nmiEi +

n(n − 1)

2
qiF i

)
. (A.20)

Saddle-point equations of the order parameters are derived from the extremum conditions
in (A.13). The saddle-point equations for

{
Gi

0,G
i
}

are, in the limit n → 0,

Gi
0 = 0, (A.21)

Gi =
∫

ρ̄0

⎛
⎝yi −

√
β(mi)2

qi
t i

⎞
⎠ ρ̄ ′′(yi −

√
βqit i)

ρ̄(yi −
√

βqit i)
Dti dyi. (A.22)

Those of
{
Ei, F i, ri

0, r
i, mi, qi

}
are given by (23a)–(23d). By observing that

Gi + Ei − F i = 0 (A.23)

holds for additive channel noise, and that

lim
K→∞

1

K

∫
1

2

∑
k,i

Ei
(
zi
k

)2
p0(�x0)

∏
k

ρG0(zk|x0k) d�z d�x0 =
∑

i

(
F i

2Ei
+

Ei

2
ri

0

)
, (A.24)

the final form of h (18) is obtained.
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Appendix B. Derivation of the decoupling structure of the coded CDMA systems

We assume that the joint distributions p([xk],x0k|S) and p(〈xk〉,x0k) in (27) are uniquely
determined by their joint moments, on the basis of which we will show that these distributions
are asymptotically statistically equivalent to each other by showing that their joint moment
sequences coincide with each other in the large-system limit. We also assume the self-
averaging property of the joint moments of p([xk],x0k|S) over the random spreading
sequences in the large-system limit. It is sufficient to show that the expectation of any
arbitrary joint moment of p([xk],x0k|S) over the random spreading sequences converges
to the corresponding joint moment of p(〈xk〉,x0k), in the large-system limit and under the
random spreading assumption. The joint moments are evaluated in a similar way to the
evaluation of the conditional differential entropy in appendix A, using the replica method.

Given a class K which accommodates K1 = ε1K users for 0 < ε1 < 1, we consider a
set X = {xak; a = 0, . . . , n, k ∈ K }. We define a function f (X ) as

f (X ) =
∑
k∈K

M∏
i=1

{(
xi

0k

)λi ∏
bi∈αi

(
xi

bik

)}
, (B.1)

where αi is a mutually disjoint subset composed of µi different replicas for i = 1, . . . ,M .
For a fixed ε1, we now define, using the function f (X ), a quantity similar to the conditional
differential entropy (15)

h̃ = lim
K→∞

1

K1
log �̃n, (B.2)

where �̃n is given by

�̃n =
∫ n∏

a=0

pa(�xa)

[∫
ES

{
n∏

a=0

pa(�y|�xa) exp (ωf (X ))

}
d�y
]

n∏
a=0

d�xa. (B.3)

We thus obtain the joint moments of p([�x], �x0|S) as

lim
n→0

∂h̃

∂ω

∣∣∣∣
ω=0

= lim
K→∞

1

K1

∑
k∈K

ES

[∫
p0(�x0)p0(�y|�x0)

∏
i

{(
xi

0k

)λi [
xi

k

]µi}
d�y d�x0

]
. (B.4)

The evaluation of (B.2) can be done as follows. By assuming the existence of the limit

φ̃(Q̃) = lim
K→∞

1

K
log

⎧⎨
⎩
∫ n∏

a=0

pa(�xa) exp

⎛
⎝ωf (X ) +

M∑
i=1

∑
a�b

Q̃i
ab

K∑
k=1

xi
akx

i
bk

⎞
⎠ n∏

a=0

d�xa

⎫⎬
⎭ ,

(B.5)

(B.2) is rewritten as

h̃ = 1

ε1
sup
Q

inf
Q̃

[β−1G(Q) − Q · Q̃ + φ̃(Q̃)]. (B.6)

Therefore, we obtain

∂h̃

∂ω

∣∣∣∣
ω=0

= 1

ε1
× ∂φ̃(Q̃)

∂ω

∣∣∣∣
ω=0

, (B.7)

where

∂φ̃(Q̃)

∂ω

∣∣∣∣
ω=0

= lim
K→∞

1

K

{ ∫ ∏
a p(�xa)f (X ) exp

(∑
i

∑
a�b Q̃i

ab

∑
k xi

akx
i
bk

)∏
a d�xa

}
{ ∫ ∏

a p(�xa) exp
(∑

i

∑
a�b Q̃i

ab

∑
k xi

akx
i
bk

)∏
a d�xa

} .

(B.8)

14



J. Phys. A: Math. Theor. 41 (2008) 324022 T Yano et al

By evaluating (B.5) under the RS ansatz (A.14), the right-hand side of (B.7) in the limit n → 0
is given by

lim
n→0

{
1

ε1
× ∂φ̃(Q̃)

∂ω

∣∣∣∣
ω=0

}
= lim

K→∞
1

K1

∑
k∈K

〈〈∏
i

(
xi

0k

)λi 〈
xi

k

〉µi
〉〉
, (B.9)

where 〈· · ·〉 and 〈〈· · ·〉〉 are defined by (24) and (25), respectively. From (B.4) and (B.9), we
obtain

lim
K→∞

1

K1

∑
k∈K

ES

[∫
p0(�x0)p0(�y|�x0)

∏
i

{(
xi

0k

)λi [
xi

k

]µi
}

d�y d�x0

]

= lim
K→∞

1

K1

∑
k∈K

〈〈∏
i

(
xi

0k

)λi 〈
xi

k

〉µi
〉〉
. (B.10)

Letting ε1 → 0, so K1 → 1 (whose justification is not discussed here, but will be given on
the basis of an argument in [13]), we have, in the large-system limit K → ∞,

ES

[∫
p0(�x0)p0(�y|�x0)

∏
i

{(
xi

0k

)λi [
xi

k

]µi}
d�y d�x0

]
=
〈〈∏

i

(
xi

0k

)λi 〈
xi

k

〉µi
〉〉
, (B.11)

which means that the joint distributions p([xk],x0k|S) and p(〈xk〉,x0k) share the same joint
moments under random spreading and in the large-system limit.
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